
IEEE Communications Surveys & Tutorials • Second Quarter 200444

n recent years, the WWW has become an essential tool for
interaction among people and for providing a wide range
of Internet-based services, including shopping, banking,

entertainment, etc. As a consequence, the volume of trans-
ported WWW traffic has been increasing at a fast rate. Such
rapid growth has made the network prone to congestion and
has increased the load on servers, resulting in an increase in
the access times of WWW documents.

WWW caching provides an efficient remedy to the latency
problem by bringing documents closer to clients. Caching can
be deployed at various points in the Internet: within the client
browser, at or near the server (reverse proxy) to reduce the
server load, or at a proxy server. A proxy server is a computer
that is often placed near a gateway to the Internet (Fig. 1)
and that provides a shared cache to a set of clients. Client
requests arrive at the proxy regardless of the Web servers that
host the required documents. The proxy either serves these
requests using previously cached responses or obtains the
required documents from the original Web servers on behalf
of the clients. It optionally stores the responses in its cache
for future use. Hence, the goals of proxy caching are twofold:
first, proxy caching reduces the access latency for a document;
second, it reduces the amount of “external” traffic that is
transported over the wide-area network (primarily from
servers to clients), which also reduces the user’s perceived
latency. A proxy cache may have limited storage in which it
stores “popular” documents (documents that users tend to
request more frequently than other documents). For example,

in a wireless ad hoc network, each mobile terminal (MT) is
equipped with a small storage space that enables the MT to
act as a proxy server for a group of neighboring devices [1].
Whenever the cache is full and the proxy needs to cache a
new document, it has to decide which document to evict from
the cache to accommodate the new document. The policy
used for the eviction decision is referred to as the replacement
policy. The topic of WWW caching for wireless users is rather
new, and not much work has been done in this area. It can be
argued, however, that the extensive research on caching for
wireline networks can be adapted for the wireless environ-
ment with modifications to account for MT limitations and
the dynamics of the wireless channel. These limitations
include the MT’s limited battery life and its small cache size.
To the best of our knowledge, no work has dealt specifically
with caching policies for the wireless environment. In fact,
while much work has been done on caching for wireless net-
works (e.g., [2–5]), only a few papers have been published
specifically on WWW caching. In [1] the authors investigated
the design of a cooperative WWW caching for ad hoc net-
works, in which neighboring MTs exchange information about
their cache contents. Although the work suggested a caching
policy that considers the energy cost associated with getting
the document from a remote server in its replacement deci-
sion, the details of the policy were left for a future work.

Caching policies for traditional memory systems do not
necessarily perform well when applied to WWW traffic for the
following reasons:

I

S U R V E Y S
I E E E
C O M M U N I C A T I O N S

T h e E l e c t r o n i c M a g a z i n e o f
O r i g i n a l P e e r - R e v i e w e d S u r v e y A r t i c l e s

ABDULLAH BALAMASH AND MARWAN KRUNZ, UNIVERSITY OF ARIZONA

ABSTRACT
The increasing demand for World Wide Web (WWW) services has made document
caching a necessity to decrease download times and reduce Internet traffic. To make

effective use of caching, an informative decision has to be made as to which
documents are to be evicted from the cache in case of cache saturation. This is

particularly important in a wireless network, where the size of the client cache at the
mobile terminal (MT) is small. Several types of caching are used over the Internet,
including client caching, server caching, and more recently, proxy caching. In this

article we review some of the well known proxy-caching policies for the Web.
We describe these policies, show how they operate, and discuss the main traffic
properties they incorporate in their design. We argue that a good caching policy
adapts itself to changes in Web workload characteristics. We make a qualitative
comparison between these policies after classifying them according to the traffic
properties they consider in their designs. Furthermore, we compare a selected

subset of these policies using trace-driven simulations.

AN OVERVIEW OF
WEB CACHING REPLACEMENT ALGORITHMS

SECOND QUARTER 2004, VOLUME 6, NO. 2

www.comsoc.org/pubs/surveys

IEEE Communications Surveys & Tutorials • Second Quarter 2004 45

• In memory systems, caches deal mostly with fixed-size
pages, so the size of the page does not play any role in
the replacement policy. In contrast, WWW documents
are of variable size, and document size can affect the
performance of the policy.

• The cost of retrieving missed WWW documents from
their original servers depends on several factors, includ-
ing the distance between the proxy and the original
servers, the size of the document, and the bandwidth
between the proxy and the original servers. Such depen-
dence does not exist in traditional memory systems.

• WWW documents are frequently updated, which means
that it is very important to consider the document expira-
tion date at replacement instances. In memory systems,
pages are not generally associated with expiration dates.

• The popularity of WWW documents generally follows a
Zipf-like law (i.e., the relative access frequency for a doc-
ument is inversely proportional to the “rank” of that doc-
ument) [6]. This essentially says that popular WWW
documents are very popular and a few popular docu-
ments account for a high percentage of the overall traf-
fic. Accordingly, document popularity needs to be
considered in any Web caching policy to optimize a
desired performance metric. A Zipf-like law has not
been noticed in memory systems.1
Several WWW replacement policies have been proposed in

the literature. Such policies attempt to optimize various per-
formance metrics, including the file hit ratio, the byte hit
ratio, the average download time, and the “delay saving ratio”
[7, 8]. Table 1 describes some of these metrics.

Replacement policies rely on key metrics (parameters) to
achieve their goals. Many of them use the recency or frequen-
cy information of past references; both properties are well
exhibited in WWW traffic [9–11]. For example, the well
known least recently used (LRU) caching policy employs the
time since last access as its only parameter. Some policies
combine both recency and frequency information, along with
some other parameters such as the size of the document and
the cost associated with each document. Since WWW docu-
ments are of variable size, two documents with different sizes
and with the same likelihood of being referenced can have
different costs. The cost of a document includes the time and
processing overhead associated with retrieving the document
from the original server. The lifetime of the document and
the cache space overhead associated with the document size
are also considered as cost factors. Table 2 summarizes some
of the parameters used in cache replacement policies.

In [12] Wang provided a good survey of Web caching

schemes. However, the survey does not
discuss the replacement policies in detail.
Rather, it addresses several topics related
to Web caching, including cache architec-
tures, protocols, replacement policies,
prefetching, cache coherency, proxy place-
ment, user access prediction, and dynamic
objects caching.

In this article we review a representa-
tive set of WWW proxy cache replace-
ment policies. There are other policies
that are not discussed in this article
because they represent variations to the
policies that we survey. Information about
these policies can be found in the cited

references. We provide a general comparison between these
policies based on the criteria used for evicting documents. We
divide these policies into two main groups: deterministic poli-
cies and randomized policies. Randomized algorithms use
some sort of randomness in the selection criteria to reduce
the running-time complexity. Such randomness is usually
based on some parameters, including the time since last
access, the number of references, and the document size. On
the other hand, deterministic algorithms use a deterministic
manipulation of such parameters in the decision making. We
describe each category and survey some of the representative
policies from each category. Moreover, we make a qualitative
comparison between these policies, and support our discus-
sion with simulation results and citations from the literature.

DETERMINISTIC POLICIES

One popular group of deterministic replacement policies are
key-based. In these policies, one or more keys are used in the
decision-making in a prioritized fashion. A primary key (or

� FIGURE 1. Possible locations for deploying WWW caching.

Web
server

Internet

Client
Proxy
cache

Browser
cache

Reverse
proxy
cache

1 While memory systems are known to exhibit strong temporal locality, this
concept is different from document popularity.

� Table 1. Examples of performance metrics used in cache
replacement policies.

File hit ratio

Byte hit ratio

Saved bandwidth Directly related to byte hit ratio

Delay saving ratio

(validation delay is ignored)

Average download time

Notation:
si = size of document i
fi = total number of requests for document i
hi = total number of hits for document i
di = mean fetch delay from server for document i
R = set of all accessed documents
||R|| = size of R

d h f

R
i i ii R ⋅ −∈∑ (/)1

d h

d f
i ii R

i ii R

⋅
⋅

∈

∈

∑
∑

s h

s f
i ii R

i ii R

⋅
⋅

∈

∈

∑
∑

h

f
ii R

ii R

∈

∈

∑
∑

Metric Definition

IEEE Communications Surveys & Tutorials • Second Quarter 200446

parameter) is used to decide which document to evict from
the cache in case of cache saturation. Additional keys are
used to break ties that may arise during the selection process.
Classical replacement policies, such as the LRU and the least
frequently used (LFU) policies, fall under this category. LRU
evicts the least recently accessed document first, on the basis
that the traffic exhibits temporal locality. Intuitively, the far-
ther in time a document has last been requested, the less like-
ly it will be requested in the near future. LFU evicts the least
frequently accessed document first, on the basis that a popu-
lar document tends to have a long-term popularity profile.
Other key-based policies (e.g., SIZE [13] and LOG2-SIZE
[14]) consider document size as the primary key (large docu-
ments are evicted first), assuming that users are less likely to
re-access large documents because of the high access delay
associated with such documents. SIZE considers the docu-
ment size as the only key, while LOG2-SIZE breaks ties
according to log2 (document size), using the last access
time as a secondary key. Note that LOG2-SIZE is less sensi-
tive than SIZE to small variations in document size (e.g.,
log2 1024 = log2 2040 = 10). The LRU-threshold and the
LRU-MIN [14] policies are variations of the LRU policy.
LRU-threshold works the same way as LRU except that docu-
ments that are larger than a given threshold are never cached.
This policy tries to prevent the replacement of several small
documents with a large document by enforcing a maximum
size on all cached documents. Moreover, it implicitly assumes
that a user tends not to re-access documents greater than a
certain size. This is particularly true for users with low-band-
width connections. LRU-MIN gives preference to small-size
documents to stay in the cache. This policy tries to minimize
the number of replaced documents, but in a way that is less
discriminating against large documents. In other words, large
documents can stay in the cache when replacement is required
as long as they are smaller than the incoming one. If an
incoming document with size S does not fit in the cache, the
policy considers documents whose sizes are no less than S for
eviction using the LRU policy. If there is no document with
such size, the process is repeated for documents whose sizes
are at least S/2, then documents whose sizes are at least S/4,
and so on. Effectively, LRU-MIN uses log2 (document size)
as its primary key and the time since last access as the sec-
ondary key, in the sense that the cache is partitioned into sev-
eral size ranges and document removal starts from the group
with the largest size range. The difference between LOG2-
SIZE and LRU-MIN is that cache partitioning in LRU-MIN
depends on the incoming document size and LOG2-SIZE
tends to discard larger documents more often than LRU-
MIN. Hyper-G [13] is an extension of the LFU policy, where
ties are broken according to the last access time. Note that
under the LFU policy, ties are very likely to happen.

Pitkow/Recker [13] is an LRU policy that oper-
ates on a diurnal cycle; documents accessed on
the same day are assumed to have the same
recency. For same-day accesses, the largest docu-
ment is evicted first. This policy seems to implic-
itly assume that client interests change from one
day to another, and on a given day the client
tends to concentrate his/her requests on a given
set of documents.

The main goal of the previously discussed
policies is to increase the file (or byte) hit ratio.
In contrast, the lowest-latency-first policy [15]
considers the document download time as its pri-
mary and only key (the document with the lowest
download time is evicted first), so as to minimize
the average download latency.

Function-based policies are another type of deterministic
policy. These policies are also key-based, but with multiple
keys used combinedly in a balanced manner, that is, there is
no sequential ordering of these keys. Instead, the keys can
have different weights in the cost function. All function-based
policies aim at retaining the most valuable documents in the
caches, but may differ in the way they define the cost func-
tion. Weights given to different keys are based on their rela-
tive importance and the optimized performance metric. Since
the relative importance of these keys can vary from one
WWW stream of requests to another or even within the same
stream, some policies adjust the weights dynamically to
achieve the best performance.

The GreedyDual algorithms [16] constitute a broad class of
algorithms that include a generalization of LRU (GreedyDu-
al-LRU). GreedyDual-LRU is concerned with the case in
which different costs are associated with fetching documents
from their servers. Several function-based policies are
designed based on GreedyDual-LRU. They include the
GreedyDualSize (GDS) [17], the Popularity-Aware Greedy
DualSize (PGDS) [11], and the GreedyDual* (GD*) [10] poli-
cies. Other function-based policies are based on “classical”
algorithms (e.g., LRU). These policies include the Size
Adjusted LRU (SLRU) policy [18]. In the following sections
we present some of the well known function-based policies.
Throughout the sections we use Sp and Cp to indicate the size
and cost of a document p, respectively. The capacity of the
cache (in bytes) is indicated by S.

GREEDYDUAL-BASED POLICIES

Cao and Irani extended GreedyDual-LRU to incorporate
varying WWW document sizes. In GreedyDual-LRU, each
cached document, p, is assigned a cost value H(p). Initially,
H(p) is the cost of bringing document p to the cache. Every
time a document is accessed, its H value is set to the cost of
bringing that document to the cache. Once there is a need to
evict a document from the cache, the document with the low-
est H value, denoted by Hmin , is evicted and the H values of
all other documents are reduced by Hmin . Thus, the H values
of recently accessed documents retain higher fractions of their
initial costs than those that have not been accessed for a
longer time (i.e., the document value reflects the recency
information plus the document cost).

GDS extends GreedyDual-LRU by incorporating in the
H value the size of a document. Initially, H(p) is assigned
the utility value u(p) =

∆
Cp /Sp . So a document A is less valu-

able than a document B that has the same cost if A is larger
in size than B. The cost Cp is defined according to the goal
of the caching policy. It is set to 1 if the goal is to maximize
the hit ratio, or it can be set to the document download

� Table 2. Examples of commonly used parameters (keys) in cache replace-
ment policies.

Last access time Web traffic exhibits strong temporal locality.

Number of previous Frequently accessed documents are likely to be
accesses accessed in the near future.

Average retrieval time Caching documents with high retrieval times
can reduce the average access latency.

Document size Caching small documents can increase the hit
ratio.

“Expires” or “last modified” Caching an expired document wastes cache
HTTP header values space and results in a miss when the document

is accessed.

Parameter Rationale

IEEE Communications Surveys & Tutorials • Second Quarter 2004 47

latency if the goal is to minimize the average download
latency. Setting Cp = 1 enables the policy to discriminate
against large documents, allowing for smaller documents to
be cached. Size discrimination combined with the adoption
of an aging mechanism (through the retained recency infor-
mation) can maximize the hit ratio. Without the aging
mechanism, the cache can be polluted by small documents
that are never requested, as can happen in the SIZE policy
[19, 20]. To reduce the complexity of the GDS algorithm
(the need to subtract Hmin from the H values of all the doc-
uments that are retained in the cache during the eviction
process), an inflation value L is defined at the replacement
decision time and is initially set to Hmin . Once a cached
document p is accessed, its H value is reset to its initial
value Cp /Sp plus L. The H values of the other cached docu-
ments are not changed.

The popularity profile of WWW accesses is known to
approximately follow a Zipf-like distribution [6], whereby the
access frequency of a document is proportional to the rank of
that document. This means that a popular document is very
popular. Such a characteristic suggests the use of the long-
term frequency information (in contrast, the temporal locality
in a request stream [21] suggests the use of short-term recency
information). Jin and Bestavros took the GDS policy one step
further by incorporating into it the popularity profile of
WWW documents. The result of this extension is the PGDS
algorithm. In PGDS, a utility value u(p) =

∆
f (p)C p /Sp is

assigned to each document p, where f(p) is the access frequen-
cy (i.e., popularity) of document p. Access recency is captured
through an inflation variable, L, as in the GreedyDualSize
policy. Each document p in the cache is initially assigned the
value H(p) = u(p). In case of cache saturation, the document
with the lowest H value (Hmin) is evicted, and the inflation
variable is assigned the value Hmin . Each time a document is
accessed, its H value is set to its utility value plus L. To com-
pute f(p), preference is given to more recent references to
avoid polluting the cache with previously popular documents
that are no longer popular. This is done by de-emphasizing
the significance of old accesses by scaling down the count of
old references by half every two days (experimental results
showed that the relative significance of past accesses should
not be down-weighted too quickly [11]).

In [9, 11] the authors studied the temporal locality in
WWW traffic and concluded that such a phenomenon is
induced by both temporal correlations and long-term popular-
ity. More specifically, references to long-term popular docu-
ments tend to be close to each other in time. Moreover,
references to certain unpopular documents (in the long term)
exhibit strong temporal correlations, as these references
appear “clustered” in time (e.g., a document is repetitively
requested but only during a short period of time). It is impor-
tant to differentiate between the two sources of temporal
locality since this can help the policy adapt itself based on the
dominant source of temporal locality. Both sources are incor-
porated in the GD* policy. Temporal correlations are cap-
tured by modeling the probability distribution of the reference
interarrival time for equally popular documents (to equalize
the effect of popularity). For equally popular documents, the
probability that the reference interarrival time equals t is
roughly proportional to t – β, where 0 < β < 1.

In essence, GD* is an extension of the PGDS policy, in
which a utility value u is defined for every accessed document.
The utility value is adjusted to reflect the degree of temporal
correlations found in the traffic history (old references).
Based on the distribution for the reference interarrival times
for equally popular documents, which is proportional to t – β,
the authors argued that the maximum time a document p

stays in the cache is proportional to u1/ β (the higher the value
of β, the weaker are the temporal correlations). As in PGDS,
every accessed document p is assigned a value H(p), which is
equal to the utility value plus an inflation value L. Documents
are replaced according to their H values (the document with
the lowest H value is evicted first). The smaller the H value,
the higher is the probability that the document will be evicted
in case of cache saturation. Once a document is evicted, its H
value is assigned to the inflation value L. The parameter β is
computed online using a least-square fit. Figure 2 depicts the
general operation of GDS, PGDS, and GD*.

LEAST RELATIVE VALUE (LRV) POLICY

Rizzo and Vicisano [22] performed a comprehensive statistical
analysis of several WWW traffic traces, looking for the suit-
able parameters that can be used to design an adaptive
replacement policy. They came up with the LRV policy. As in
other function-based policies, LRV assigns a value V(p) for
each document p. Initially, V(p) is set to Cp Pr (p)/G(p) , where
Pr (p) is the probability that document p will be accessed again
in the future starting from the current replacement time and
G(p) is a quantity that reflects the gain obtained from evicting
document p from the cache (G(p) is related to the size Sp). As
a result of this choice, the value of any document is weighted
by its access probability, meaning that a valuable document

� FIGURE 2. GreedyDualSize, PGDS, and GD* policies.

Upon receiving a
request to document

p do

L=0

Fetch p

Cache p

Set L=min H(q)
qεcache

Evict q for which
H(q) = L

H(p)=L + u(p)1/β (GD*)
H(p)=L + u(p) (GDS and PGDS)

Update f(p) (PGDS and GD*)

Is p in cache?
Yes

No

No

Is there
enough space

for p?

Start

Yes

IEEE Communications Surveys & Tutorials • Second Quarter 200448

(from the cache point of view) that is unlikely to be re-
accessed is actually not valuable. It was assumed that the
propagation delay is the same for all documents, irrespective
of the location of the server. Accordingly, Cp depends only on
Sp, and thus V(p) is mainly dependent on Pr(p). In turn, Pr(p)
depends on the time since the last access to document p (Tp),
the number of previous accesses to document p (np), and Sp,
that is, Pr(p) = Pr(np, Tp, Sp). Let I be the inter-access time
for an arbitrary document given that this document will be re-
accessed, and let fI and FI be the pdf and CDF of I, respec-
tively. The computation of Pr(np, Tp, Sp) is performed as
follows. First, based on extensive trace analysis, FI is approxi-
mated as

where f(x) =∆ τ2(1 – e–x/τ2), τ1 is a parameter that reflects the
overall periodicity of references to popular documents, τ2 is a
parameter that reflects the long-term decay in the distribution
FI (the tail of the distribution), and c is a constant. These
parameters are computed dynamically. The size of a docu-
ment is found to play a role in accessing a document for the
second time, but once a document has been accessed more
than once, its size has almost no effect on the number of
future accesses. The authors argued that Pr(np, Tp, Sp) can be
computed as follows:

where Θ(np) is the probability of re-accessing document p
after it has been accessed np times in the past, where np > 1,
and Ψ(1, Sp) is the probability of re-accessing a document of
size Sp after its first access. The ratio of the number of docu-
ments seen so far that have each been requested at least np + 1
times to the number of documents that have each been
requested at least np times is equal to Θ(np). As for Ψ(1, Sp),
it is computed as the ratio of the number of documents of size
Sp seen so far that have each been accessed at least two times
to the number of documents of size Sp that have each been
accessed at least one time. The expression for Pr says that
documents with the same number of accesses that is greater
than 1 are LRU ordered, and so are the documents with
exactly one access and that have the same size. This is clear
from the above equation where 1 – FI(Tp) is a monotonically
decreasing function of the inter-access time.

The above computations need to be performed for each
document p in the cache at each replacement time. To
reduce the complexity of the algorithm, documents that have
been accessed only once are classified into k groups based
on their sizes, and documents with more than one access are
classified into 10 groups according to the number of previous
accesses. Because Θ(np) was found to saturate quickly for np
> 10, the last group contains all documents with more than
10 accesses. Documents in each group are ordered using a
separate LRU stack. Any document at the bottom of an
LRU stack has a smaller 1 – FI(Tp) value than any other
document in the same stack, which means that it has a lower
Pr value than the other documents in its respective stack.
Since the number of groups (k + 10) is small and fixed, the
replacement decision requires a fixed amount of computa-
tional time. In case of cache saturation, the Pr values for
documents at the bottom of each LRU stack are recomput-
ed, and the one with the lowest value is replaced first. Once
a cached document is accessed, it is moved to the top of the
LRU stack of the next higher group.

LNC-R-W3-U POLICY

Shim et al. [8] designed and implemented a cache policy
called the least normalized cost replacement for the Web with
updates (LNC-R-W3-U). This policy is based on the LRU-K
buffer caching policy [23], integrating both cache replacement
and consistency (the two were treated independently in previ-
ous policies). Consistency mechanisms try to keep cached doc-
uments up to date, which is important for frequently updated
WWW documents. LNC-R-W3-U gives preference to docu-
ments that are infrequently updated and that have high down-
load latencies. The replacement policy is based on the
following optimization problem, in which the cache retains
documents that account for a large fraction of the communica-
tion delay: maxΣp∈Cache(rp dp – up cp) subject to Σp∈Cache Sp ≤ S,
where rp and up are the mean reference rate and the mean
validation rate for document p, respectively; and dp and cp are
the delays to fetch document p from the original server and to
validate document p, respectively. The mean reference rate
for a given document is the average number of references to
that document over a fixed period of time, while the mean
validation rate is the average number of validation requests
over a fixed period of time. The above optimization problem
is equivalent to the well known knapsack problem, in which
the goal is to retain documents in the cache that maximize
the total cost. The knapsack problem is NP-hard (i.e., it
cannot be solved in polynomial time). One of the well
known heuristics to address this problem is to keep in the
cache documents with higher cost per size. The intuition
behind this heuristic is that each document can be viewed as
consisting of several small pieces, each of a fixed size and a
cost that is equal to the cost of the document divided by its
size. Using this heuristic, a profit value is defined for each
document p: profitp =∆ (rpdp – upcp)/Sp. At the replacement
time, the document with the lowest profit is replaced first.

The mean delay to fetch a document (dp) and the mean
delay to validate a document (cp) are computed using a mov-
ing average of recently measured values. The mean reference
rate rp is computed using a sliding window: rp = k/(t – tk, p),
where t is the current time and tk , p is the time of the kth most
recent reference to document p. To improve the precision of
computing rp, the authors used a result from [24], in which rp
was set to c/(Sp

b), where b and c are constants. This estimation
assumes that the document size and the likelihood of re-
accessing this document are correlated. The two above esti-
mates of rp are combined as rp = k/((t – tk , p)Sp

b). The
validation rate up is computed from the Expires header (date
at which a document expires) that is provided by the HTTP
server, using a sliding window: up = k/(tr , p – tuk ,p), where tr, p
is the most recent Expires and tuk, p is the kth most recent
Expires for document p. If the Expires information is not
available (not every HTTP server response has this header),
the Last-Modified time-stamp is used instead (all HTTP serv-
er responses have this header). In this case, tr , p is the time
when the last version of the document was brought to the
cache and tuk , p is the kth most recent Last-Modified time-
stamp. Since this policy incorporates cache consistency, it sets
the time to live (TTL) variable for each document in the
cache based on the Expiries information, if available; other-
wise, it sets the TTL based on the estimated mean invalida-
tion rate up. Figure 3 depicts how the policy works and how
the replacement decision is taken.

SIZE-ADJUSTED LRU (SLRU) POLICY

In [18] Aggarwal et al. designed a size/cost aware LRU policy
called SLRU. To better explain this policy, we first revisit the
standard LRU policy. The underlying principle of the LRU

P n T S
S F T n

n F Tr p p p
p I p p

p I p
(, ,)

(,)(()),

()(()),

 otherwise.
=

− =

−






Ψ

Θ

1 1 1

1

F x c
f x

I () = ∗
+





log
()

,
τ

τ
1

2

IEEE Communications Surveys & Tutorials • Second Quarter 2004 49

policy is that a dynamic frequency 1/∆Tp , k is defined for every
document that has been accessed more than once, where
∆Tp , k is the number of requested documents since the last
access to document p at time k. The LRU policy removes
objects starting from the one that has the smallest dynamic
frequency. This dynamic frequency can be considered as the
cost of purging a document from the cache. The goal is to
reduce this cost. The LRU caching policy solves the following
optimization problem: Minimize Σp∈Ω(k)Yp/∆Tp, k such that
Σp∈Ω(k)SpYp ≥ S, where Ω(k) is the set of documents in the
cache at time k and Yp is a decision variable set to 1 if we
decide to purge document p, and set to 0 if we decide to keep
the document in the cache. The standard LRU policy works
as if all documents have the same size (Sp is constant), making
the optimization problem trivial (it can be solved by ordering
the documents in an increasing order of their dynamic fre-
quencies). In the case of SLRU, this optimization problem
becomes a knapsack problem. As we indicated before, a fast
heuristic for solving this problem is to order documents
according to the cost/size ratio, 1/(∆Tp, kSp), and evict the doc-
ument with the lowest ratio first to accommodate a newly
arrived document.

SLRU is a complex algorithm. At each replacement point,
the 1/(∆Tp, kSp) values need to be computed for every docu-
ment in the cache, and then the documents need to be sorted
based on these values. A simpler implementation can be used, in
which documents are classified into groups based on their sizes.
Documents in group i have sizes in the range [2 i – 1 , 2 i – 1].
Documents in each group are LRU ordered. The 1/(∆Tp, kSp)

values of the least recently used documents in each group are
compared to decide on which document to evict. Note that
this classification of documents is the same as the one used in
LOG2-SIZE, but with the difference that LOG2-SIZE always
chooses the least recently accessed document from the group
that has the largest size range. The simplified implementation
of SLRU was found to select the document with the lowest
1/(∆Tp, kSp) value within a factor of 1/2, even in the worst case.

LRU can be further extended to include the document
access cost and the document expiration time by modifying
the decision index 1/(∆Tp , kSp) to become Cp(1 – γp)/(∆Tp, kSp),
where γ p is called the refresh overhead factor and is defined
as γ p = min{1, δ tp1/ δ t p2}, where δ t p 1 is the difference
between the time when the document enters the cache (t) and
the last access time of the document, and δ tp 2 is the differ-
ence between t and the document expiration time. The value
of γ p approximately represents the reciprocal of the number
of expected accesses to document p before document p needs
to be refreshed. The remaining TTL could be used instead,
but this value is dynamic and needs to be computed for all
documents in the cache at every replacement instance.

Both LRU and SLRU always cache a newly incoming doc-
ument. Sometimes it is not worth doing so in the first place.
SLRU can be extended to incorporate some admission criteria
for the newly incoming document. The names and time-
stamps of the last few accessed documents, the access cost,
the expiration time data, and the number of accesses to these
documents are stored in an auxiliary cache. Once a document
is accessed for the first time, it is cached if there is enough

� FIGURE 3. LNC-R-W3-U policy.

No

Upon receiving
a request for

document p do

-Classify documents into groups in
increasing order based on the number
of requests

-Order each group based on the profit
from the smallest to the largest

-Evict documents starting from the first
group and from the lowest profit document
until there is enough space for document p,
and then cache p

Yes Yes

No

Issue
conditional

GET

Update cp,
up, rp,

and TTLpUpdate rpCompute up
TTLp = 1/up

Cache p
update rp, dp

Has
document
p expired?

No

No

Is
document

p in
cache?

Yes

Fetch p
TTLp =

expiries-tnow

Yes
Does

document
p have
Expires
header?

Is there
enough
space
for p?

Start

IEEE Communications Surveys & Tutorials • Second Quarter 200450

space to accommodate it. If the cache is full, then the auxil-
iary cache is checked, and if the name of the document is not
in the auxiliary cache, the document does not enter the cache
and its information is added to the auxiliary cache. If the
name of the document is in the auxiliary cache and the docu-
ment has been accessed for at least k times, then it is consid-
ered as a candidate for caching according to the SLRU
replacement policy. Such an admission control policy ensures
that an incoming document is popular enough to offset the
loss due to the replaced document.

LEAST UNIFIED VALUE (LUV) POLICY

In [7] Bahn et al. tried to get the benefit of both LRU and
LFU in one unified scheme. In their scheme, each document
p in the cache is assigned a value

where ∆ k , p is the time since the kth reference to document p
and F is a function that gives different weights to past refer-
ences to document p. This definition includes both LRU and
LFU policies as special cases, where in LRU the weights are 0
for all references other than the last reference, and in LFU
the weights associated with all references are equal.

The two special cases described above can be combined by
taking

If λ = 0, then F(∆k , p) is constant, and if λ = 1, then

The range of values that λ can take (0 ≤ λ ≤ 1) allows LUV
to represent a wide range of caching policies that consider
both the short-term recency information and the long-term fre-
quency information of the accessed documents, with different
emphasis based on the value of λ. If λ is close to 1, more
emphasis is placed on the recency information; if λ is close to
0, the emphasis is shifted toward the frequency information.
The value of a document p at the kth reference can be defined
recursively as a function of its value at the (k – 1)th reference
as follows: Vp(k) = F(time since last access)Vp(k – 1) + Cp/Sp.
The manner in which the function F is defined guarantees
that the relative ordering of documents does not change
unless a document is accessed. So the value of a given docu-
ment is updated only when the document is accessed. In the
case of cache saturation, the document with the lowest value
is evicted first. The parameter λ is computed offline in a way
to maximize the desired performance metric.

HYBRID POLICY

Wooster and Abrams introduced the Hybrid policy [15], with
the aim of reducing the access latency. This policy uses a utili-
ty function that depends on the originating server through the
round trip delay (rtts) and the bandwidth (bs) between the
proxy cache and server s. For a document p, the utility func-
tion also depends on the number of times p has been request-
ed since it was brought to the cache (nrefp) and the size of the
document. More specifically, this utility function is defined as:
u(p) = (rtts + Wb/bs) ∗ (nrefp)Wn/Sp, where Wb and Wn are
constants. The value of Wb is selected based on the impor-
tance of the connection time relative to the connection band-
width, while the value of Wn quantifies the importance of the

frequency information relative to the size of the document.
The values of rtts and bs are estimated based on the time to
fetch documents from server s. Hybrid evicts the document
with the smallest utility value first.

MIX POLICY

The Mix policy [25] is an extension of the Hybrid policy, with
one more parameter added, namely, the time elapsed since
the last reference to document p (trefp). The utility function in
Mix is defined as:

where latp is the download latency of the last access to docu-
ment p. The exponents r1, r2, r3, and r4 are determined experi-
mentally.

LOGISTIC REGRESSION ALGORITHM (LR) POLICY

In [26] Foong et al. used a logistic regression model to acquire
knowledge about WWW documents in a given trace and pre-
dict the expected distance to the next access for any document
in the cache. Logistic regression can be used to model the
probability of an event as a function of some factors (predic-
tors). In the case of WWW traffic, the factors that were con-
sidered are the document size, its type (i.e., HTML, image,
etc.), the number of accesses in a backward window Wb, and
the elapsed time since the last access. The logistic regression
probability is given by:

where z = Σi=0
k β i Xi and β i is X i’s respective coefficient. We

can think of β i as a weight given to the predictor Xi . The opti-
mal offline replacement algorithm for fixed-size objects is the
well-known Longest Forward Distance (LFD) algorithm [27],
which replaces the document whose next access is farthest in
the future. To generalize this algorithm to the non-uniform
size case, the expected distance to the next access is predicted
and is weighted by the size of the document. The document
whose weighted expected distance to the next access is the
highest is replaced first.

The probability PLR is taken as the probability of accessing
a document p at least once in the next N requests. It is com-
puted by the regression model. The probability that document
p is not accessed in the next N references is given by (1 – q)N

= 1 – PLR, where q is the probability of accessing document p
next. The number of references until the next reference to a
given document is a geometric random variable of mean
E[L(p)] = 1 /q = 1/(1 – (1 – PLR)1 / N), and the weighted
expected distance is E[L(p)]/Sp. The algorithm runs in two
phases: a learning phase and a prediction phase. Experimen-
tally, N is selected to be 50. Each time the cache gets saturat-
ed, the policy simply works by evicting the document with the
highest weighted distance. The parameters of the algorithm
are updated periodically (in the learning phase).

RANDOMIZED POLICIES

In general, function-based deterministic policies require com-
plex data structures and incur high computational overhead,
which limits the scalability of these policies. An alternative

P P event Y predictors X X X

z

LR k= = …

=
+ −

(| { , , , })

exp()

1 2

1

1

() ()

() ()
,

lat nref

tref S

p
r

p
r

p
r

p
r

1 2

3 4

∗

∗

F F yk p y p

k p() ().,
,

,∆ ∆
∆> =

−∑
1

1

F
p

pk p

k p

() , .,

,,

∆
∆

=






≥1
2

λ

V k
C

S
Fp

p

p
k pi

k() (),,= =∑∆ ∆1

IEEE Communications Surveys & Tutorials • Second Quarter 2004 51

approach is to rely on randomized algorithms. A simple exam-
ple of a randomized replacement policy is to evict a document
drawn randomly from the cache. Starobinski et al . [28]
designed a group of simple randomized algorithms that
extend two key-based algorithms, LRU and CLIMB, by incor-
porating the size, cost, or both in a randomized fashion. Both
LRU and CLIMB replace the least recently accessed docu-
ment first. However, when a cached document is accessed,
LRU brings it to the top of the cache while CLIMB exchanges
the position of that document with the one ahead of it. To
incorporate the document size, the randomized LRU-SIZE
algorithm [28] brings any requested document p to the top of
the stack with probability min(1, S1/Sp). For the randomized
CLIMB-SIZE algorithm [28], once a document p is accessed,
its position is exchanged with the one ahead of it with proba-
bility min(1, Sp–1/Sp). The cost can be incorporated in a simi-
lar way. To incorporate both size and cost, a value βp = Cp/Sp
is defined for every document p. In the randomized version of
LRU, any accessed document p is brought to the top of the
stack with probability min(1, βp/β 1), while in the randomized
version of CLIMB, the accessed document is exchanged with
the one ahead of it with probability min(1, β p/β i–1). Eviction
is done the same way as in the standard LRU and CLIMB
policies (evict the document at the bottom of the stack first),
but with the difference that the incoming document can be
evicted in the first place (i.e., not admitted).

The randomized algorithm by Posounis et al. [29] tries to
approximate any existing function-based algorithm by employ-
ing randomization. We will refer to this algorithm as RAN-
DOM. RANDOM works by randomly selecting N documents
from the cache at the time of replacement, and then selecting
the least useful document among them for replacement based
on the given policy. The next M least useful documents out of
N are kept for the next iteration. The iterations are continued
until there is enough space in the cache to accommodate the
remaining documents. The optimal value of M was found ana-
lytically to be approximately

where N is the length of the sample and n is a value that says
an error has occurred if the evicted document does not belong
to the least useful n percent of all documents. For example,
for N = 40 and n = 6, the approximate value of M is 13.8. An
algorithm somewhat similar to RANDOM was previously
used in the Squid caching system [30].

QUALITATIVE ASSESSMENT AND COMPARISON

Replacement algorithms can, in principle, be analyzed by
means of competitive analysis [16, 31, 32], where the perfor-
mance of the replacement algorithm is compared with the
performance of the optimal offline replacement algorithm.
The difference between an offline algorithm and an online
algorithm is that in the offline algorithm future requests are
known beforehand. The comparison is done based on the cost
of cache misses (a cache miss incurs a unit cost). An algo-
rithm is said to be k-competitive if the cost of cache misses is
at most k times that under the optimal offline algorithm.
Cao and Irani [17] showed that the GreedyDualSize policy is
k-competitive, where k is the ratio of the cache size and the
size of the smallest document. It was shown in [33] that deter-
ministic online paging algorithms (fixed page size) can at best
achieve a competitive ratio of k, where k is the number of
pages the cache can hold. Furthermore, LRU was found to be
optimal in the sense of being k-competitive. Since it is difficult

to compute how competitive a given online algorithm is, espe-
cially in the case of non-uniform document sizes, almost all
replacement policies proposed in the literature are evaluated
using trace-driven simulation. Some of the works (e.g., [11, 17,
26]) relied on different traces to come up with an average
assessment of the policy’s performance over different work-
loads.

Given the lack of competitive analysis for most of the sur-
veyed works, an alternative would be to provide a quantitative
comparison between them and rank them according to some
performance metric. However, such a task is made difficult
because these policies, in general, differ in their design objec-
tives (i.e., they optimize different cost functions). Further-
more, their performance depends to varying degrees on the
properties of the underlying WWW traffic, so the relative per-
formance is likely to vary from one workload to another. This
may be the main reason why in the literature, such policies
are often contrasted against “classic” policies (i.e., LRU,
LFU, and SIZE) and not against each other. One point of
commonality, though, is the significance of the document size
and the need to incorporate it in the design of the replace-
ment policy [34].

In this section, we first classify various caching policies
according to the traffic properties these policies consider in
their designs (irrespective of the performance metric used).
We then try to compare policies within a given class, support-
ing our assessment, when possible, with references from the
literature. Finally, we select one of the best policies in each
class and compare the performance of the selected policies
using trace-driven simulation. Figure 4 depicts our traffic-
based classification. Most of the surveyed policies consider the
recency (temporal locality) or frequency (popularity) informa-
tion of past references to decide which documents to keep in
the cache, on the basis that a recently or frequently refer-
enced document is more likely to be referenced again. Some
policies consider both properties simultaneously. In this case,
the relative importance of the two properties can be static
(fixed), making the performance vary with the workload, or it
can be dynamic, allowing the policy to adapt to changes in the
traffic properties. GD* is an example of a policy in which the
relative significance of the recency and frequency information

N N n– /+()1 100

� FIGURE 4. Classification of caching policies according to the
traffic information considered in their designs.

LFU

Hybrid

SIZE

Size

Hyper-G

PGDS
GD*

GDS
SLRU

Log2(SIZE)
LRU-MIN

LRU-threshold
CLIMB-S

LRU-S

LUV
LRV
LR

Mix

LNC-R-W3-U

CLIMB
LRU

Recency information
Frequency information

IEEE Communications Surveys & Tutorials • Second Quarter 200452

� FIGURE 5. File hit ratio for the NLANR trace.

Cache size (percentage of total unique bytes)
25 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

5

Fi
le

 h
it

 r
at

io

10 15 20

LUV
GDS
Hyper-G
LRU
SIZE
Hybrid

� FIGURE 6. Byte hit ratio for the NLANR trace.

By
te

 h
it

 r
at

io

Cache size (percentage of total unique bytes)
25 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

5 10 15 20

LUV
GDS
Hyper-G
LRU
SIZE
Hybrid

� FIGURE 8. File hit ratio for the DEC trace.

Fi
le

 h
it

 r
at

io

Cache size (percentage of total unique bytes)
25 300

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5 10 15 20

LUV
GDS
Hyper-G
LRU
SIZE
Hybrid

� FIGURE 7. Delay saving ratio for the NLANR trace.

D
el

ay
 s

av
in

g
ra

ti
o

Cache size (percentage of total unique bytes)
25 300

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20

LUV
GDS
Hyper-G
LRU
SIZE
Hybrid

� FIGURE 9. Byte hit ratio for the DEC trace.

By
te

 h
it

 r
at

io

Cache size (percentage of total unique bytes)
25 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20

LUV
GDS
Hyper-G
LRU
SIZE
Hybrid

� FIGURE 10. Delay saving ratio for the DEC trace.

D
el

ay
 s

av
in

g
ra

ti
o

Cache size (percentage of total unique bytes)
25 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20

LUV
GDS
Hyper-G
LRU
SIZE
Hybrid

IEEE Communications Surveys & Tutorials • Second Quarter 2004 53

vary with time. In principle, such adaptive-
ness improves the performance of the
replacement policy.

Caching policies that rely on both the
recency information and the document
size include LOG2-SIZE, LRU-MIN,
LRU-threshold, GDS (with uniform document cost), and
SLRU. SLRU and GDS are expected to give the best file (or
byte) hit ratio within this group, since the other policies first
give preference to the document size and then consider the
recency information (i.e., they are size-biased). In contrast,
SLRU and GDS consider both properties in a more bal-
anced manner [9, 11, 18]. However, the performance of
SLRU and GDS will likely degrade if there is a strong nega-
tive correlation between the object size and the likelihood of

it being referenced. This correlation, which is implicitly
assumed in LRU-MIN, LRU-threshold, and LOG2-SIZE,
was found to be very weak [6, 35], which supports our judg-
ment that these policies are inferior to GDS and SLRU.
Moreover, the authors in [18] showed that SLRU is superior
to LRU-MIN, which itself was found to outperform LRU-
threshold in most cases [14]. The LRU-MIN policy is less
biased toward the document size compared with LRU-
threshold, so in the absence of the above correlation LRU-

� Table 3. Characteristics of traces used in the simulations.

DEC 9/1–9/10, 1996 6,056,025 (51.7GB) 3,070,404 (33.0GB)

NLANR 3/20–3/26, 2002 3,810,537 (30.6GB) 1,733,794 (15.6GB)

Trace Trace period All requests (all bytes) Unique files (unique bytes)

� Table 4. Summary of cache replacement policies.

LRU • Time since last access O(1) The least recently accessed first All

LFU • Number of references O(log(n)) The least frequently accessed first All

SIZE • Document size O(log(n)) The largest first All

Hyper-G • Time since last access O(log(n)) The least frequently accessed first, and
• Number of references then the least recently accessed first All

among equally accessed documents

Log2(SIZE) • Document size O(log(n)) The largest first, and then the least All
• Time since last access recently accessed first among

equal-sized documents

LRU-threshold • Document size O(1) The least recently accessed first Documents smaller
• Time since last access than a certain size

LRU-MIN • Document size O(n) The least recently accessed with size All
• Time since last access greater than S, the least recently

accessed with size greater than S/2, the
least recently accessed with size greater
than S/4, and so on, where S is the size
of incoming document

GDS • Document size Sp O(log(n)) Least valuable first according to All
• Document cost Cp valuep = Cp /Sp + L
• An inflation value L

PGDS • Document size Sp O(log(n)) Least valuable first according to All

• Document cost Cp valuep = Cp. fp /Sp + L

• Number of non-aged references fp

• Time since last access
• An inflation value L

GD* • Document size Sp O(log(n)) Least valuable first according to All

• Document cost Cp valuep = (Cp. fp /Sp)β + L

• Number of non-aged references fp

• Time since last access
• Temporal correlation measure β
• Interaccess time for some of the

equally popular documents
• An inflation value L

Hybrid • Document size Sp O(log(n)) Least valuable first according to All

• Number of references to document valuep = (rttp + Wb/bs) . (nrefp)Wn/Sp

p since brought to cache
• Bandwidth between proxy and server bs

• Round trip delay rtts

• Some constant values Wb and Wn

Policy Key parameters Complexity Eviction Admission

IEEE Communications Surveys & Tutorials • Second Quarter 200454

MIN is expected to outperform LRU-threshold. LRU-
threshold can outperform LRU-MIN for small cache sizes
[14]. LOG2-SIZE falls in between LRU-MIN and LRU-
threshold in terms of discriminating against large documents,
so it is expected to perform better than LRU-threshold and
to perform worse than LRU-MIN. LRU-threshold has a
threshold parameter that is selected offline, which can highly
affect the performance of the policy. Although both SLRU
and GDS utilize the recency information and document size,
GDS is expected to outperform SLRU because of the

approximation done in the implementation of SLRU, as was
described before.

PGDS, GD*, LNC-R-W3-U (with uniform access delay),
LRV, LR, and LUV are comparable policies, since they all
utilize recency, frequency, and size information. They differ
in that some of them are adaptive while others are not. GD*
is an adaptive policy that tries to dynamically balance the two
sources of temporal locality of referenced documents (tempo-
ral correlations and long-term popularity [11, 36]), which
allows it to outperform PGDS [10, 11]. LUV and LNC-R-

� Table 5. Summary of cache replacement policies.

Mix • Document size Sp O(log(n)) Least valuable first according to All

• Time since last access trefp valuep = (latp
r1 . nrefp

r2)/(trefp
r3 . Sp

r4)

• Download latency of last access to p,
latp

• Constant weights r1, r2, r3, and r4

• Number of references to document p
since brought to cache

LNC-R-W3-U • Document size Sp O(n) Least valuable first according to All

• Time since the kth most recent valuep = (rp.dp – up. cp)/Sp

reference
• Document access rate rp

• Document mean fetch delay dp

• Document update rate up

• Document mean validation delay cp

• Document expiration time or last
modified time

SLRU • Number of accesses since last reference O(log(n)) Least valuable first according to Based on the past
∆p ,k valuep = (Cp. (1 – γp))/Sp∆p,k,

• Document size Sp where γp is document p refresh
• Document cost Cp overhead factor

LUV • Time since last access tl O(log(n)) Least valuable first according to All
• Document cost Cp Vp(k) = F(tl)Vp(k – 1) + Cp /Sp, where k
• Document size Sp is the kth reference to document p

• Constant value λ and F(x) = (1/2)λx

LRV • Document size Sp O(1) Evict the least likely to be accessed All
• Time since last access Tp first based on documents access
• Number of previous accesses np probabilities Pr(np, Tp, Sp)
• Other tuning parameters τ1 andτ2

LR • Document size Sp O(log(n)) Evict the document with the least All
• Document type weighted expected distance to next
• Number of references in a backward access, which is equal to

window Wb Sp /(1 – (1 – PLR)(1/N)), where PLR is the
• Time since last access probability of accessing the document

in the next N = 50 requests

LRU-S • Document size Sp O(1) Document at the bottom of the LRU Random
stack first (assuming that a newly
arrived document is admitted)

CLIMB-S • Document size Sp O(1) Document at the bottom of the LRU Random
stack first (assuming that a newly
arrived document is admitted)

RANDOM • Number of samples N Variable Open Open
• Number of samples to keep from a

previous iteration M
• Error control parameter n

Policy Key parameters Complexity Eviction Admission

IEEE Communications Surveys & Tutorials • Second Quarter 2004 55

W3-U are less adaptive than GD*, since they involve some
parameters that need to be tuned offline. Accordingly, we
expect GD* to outperform them. LUV was shown to outper-
form LNC-R-W3-U and LRV [7] with offline tuning of its λ
parameter with respect to the cache size and the optimized
performance metric, but it is not clear if this holds under all
types of traffic.

Next, we compare policies from different groups using
trace-driven simulation. We select one representative policy
from each group. A representative policy does not reflect the
average performance of its group, but rather the performance
of the better policies in that group. We select the standard
policies LRU, LFU, and SIZE to represent three different
groups. From the group that utilizes the recency, frequency,
and size information, we choose LUV. GDS (with unit cost) is
selected to represent the group that utilizes the recency and
size information. Hybrid and Hyper-G are the only policies of
the remaining groups, so they are also considered in the com-
parison. Since Hyper-G is an LFU policy that breaks ties
using the time since the last access, it is expected to perform
better than LFU, so we do not simulate LFU. Moreover, in
implementing LFU we need to adopt a policy to break ties,
which are very likely to happen. Our comparison is made
based on three performance metrics: the file hit ratio, the byte
hit ratio, and the delay saving ratio.

In our simulations, we use two different traces: the first
trace is from the public proxy server of Digital Equipment
Corporation (DEC); the second trace is from the National
Laboratory for Applied Network Research (NLANR). We
manipulated the two traces to extract the needed information.
Primarily, we simulated only those requests that are cacheable
(i.e., we excluded CGI requests). Some of the characteristics
of these traces are shown in Table 3. Figures 5 through 10
show the simulation results. As can be seen, LUV policy out-
performs the other policies for all performance metrics [7].
This can be attributed in part to the offline tuning of λ, for
both the cache size and the performance measures. For the
file hit ratio, it is clear that the GDS policy (with unit cost)
outperforms LRU and Hyper-G, and comes second after
LUV for different cache sizes. Hyper-G is shown to be superi-
or to LRU [10, 11, 34]. For a small cache size, SIZE outper-
forms Hybrid, but they tend to perform similarly when the
cache size is reasonably large [7]. For a small cache size, these
policies are inferior to the other policies [17, 26]. For a large
cache size, SIZE and Hybrid tend to outperform Hyper-G and
LRU [7, 17, 22, 26]. For the byte hit ratio, the policies are
ranked irrespective of the cache size. In this case, Hyper-G
comes next to LUV and comes very close to LUV as the
cache size increases [7]. LRU is next to Hyper-G and outper-
forms GDS [9, 10, 17, 34]. GDS outperforms Hybrid, which
outperforms SIZE [10, 15, 34]. With respect to the delay sav-
ing ratio, the simulated policies are clearly distinct from each
other, having the same ranking as that for the byte hit ratio,
with the exception that the GDS policy jumps to second place
after the LUV policy.

Since randomized algorithms (i.e., RANDOM) generally
try to approximate the performance of other policies with the
benefit of less complexity, they exhibit similar performance to
the approximated policies [29].

The computational complexity of the surveyed replacement
policies ranges from O(1) to O(n), where n is the number of
cached documents. Most of the policies that achieve good per-
formance have O(log(n)) complexities. According to the above
classification, policies in a given group have, in general, com-
parable complexities (both computation and space). Tables 4
and 5 summarize the main aspects of the algorithms described
in this article.

CONCLUSIONS

In this article we reviewed some of the well known proxy
caching policies for WWW traffic. We classified these policies
into deterministic and randomized policies. We discussed the
parameters they use in decision making and made a qualita-
tive comparison between them after regrouping them based
on the traffic information they utilize. We compared policies
in the same group irrespective of the performance metric. We
then selected representative policies from each group and
ranked them according to three performance metrics using
results reported in the literature as well as our own simula-
tions. The goodness of any policy lies in the adaptiveness of
its algorithm, which adjusts dynamically to changes in the
workload characteristics.

ACKNOWLEDGMENT

This work was supported by the National Science Foundation
through Grants ANI-0095626, ANI-0313234, and ANI-
0325979, by a scholarship from the government of Saudi Ara-
bia through King Abdul-aziz University, and by the Center for
Low Power Electronics (CLPE) at the University of Arizona.
CLPE is supported by the NSF (grant # EEC-9523338), the
State of Arizona, and a consortium of industrial partners.

REFERENCES

[1] F. Sailhan and V. Issarny, “Energy-Aware Web Caching for
Mobile Terminal,” Proc. IEEE 22nd Int’l. Conf. Distributed Com-
puting Systems, July 2002, pp. 820–25.

[2] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy
for Mobile Environments,” IEEE Trans. Knowledge and Data
Engineering, vol. 15, no. 5, Sept. 2003, pp. 1251–65.

[3] S. Gitzenis and N. Bambos, “Power-Controlled Data Prefetch-
ing/Caching in Wireless Packet Networks,” Proc. IEEE INFOCOM
Conf., vol. 3, June 2002, pp. 1405–14.

[4] G. Cao, “Proactive Power-Aware Cache Management for
Mobile Computing Systems,” IEEE Trans. Comp., vol. 51, no. 6,
June 2002, pp. 608–21.

[5] P. Nuggehalli, V. Srinivasan, and C.-F. Chiasserini, “Energy-Effi-
cient Caching Strategies in Ad Hoc Wireless Networks,” Proc.
4th ACM Int’l. Symp. Mobile Ad Hoc Net. and Comp., June
2003, pp. 25–34.

[6] L. Breslau et al., “Web Caching and Zipf-Like Distributions: Evi-
dence and Implications,” Proc. IEEE INFOCOM Conf., 1999, pp.
126–34.

[7] H. Bahn et al., “Efficient Replacement of Nonuniform Objects
in Web Caches,” IEEE Comp., June 2002, pp. 65–73.

[8] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy Cache Algo-
rithms: Design, Implementation, and Performance,” IEEE Trans.
Knowledge and Data Engineering, vol. 11, no. 4, July/Aug.
1999, pp. 549–62.

[9] S. Jin and A. Bestavros, “Sources and Characteristics of Web
Temporal Locality,” Proc. IEEE/ACM Int’l. Symp. Modeling,
Analysis and Simulation of Comp. and Telecommun. Sys., San
Francisco, CA, Aug. 2000, pp. 28–35.

[10] S. Jin and A. Bestavros, “Greedy-dual* Web Caching Algorithm,”
Int’l. J. Comp. Commun., vol. 24, no. 2, Feb. 2001, pp. 174–83.

[11] S. Jin and A. Bestavros, “Popularity-Aware Greedy-dual Size
Web Proxy Caching Algorithms,” Proc. IEEE Int’l. Conf. Dis-
tributed Computing Systems (ICDCS), Taiwan, May 2000, pp.
254–61.

[12] J. Wang, “A Survey of Web Caching Schemes for the Inter-
net,” ACM Comp. Commun. Review, vol. 29, no. 5, Oct. 1999,
pp. 36–46.

[13] S. Williams et al., “Removal Policies in Network Caches for
World Wide Web Documents,” Proc. ACM SIGCOMM Conf.,
Stanford University, Aug. 1996, pp. 293–305.

[14] M. Abrams et al., “Caching Proxies: Limitations and Poten-
tials,” Proc. 4th Int’l. World Wide Web Conf., Boston Universi-
ty, Dec. 1995.

IEEE Communications Surveys & Tutorials • Second Quarter 200456

[15] R. Wooster and M. Abrams, “Proxy Caching that Estimates
Page Load Delays,” Proc. 6th Int’l. World Wide Web Conf.,
Santa Clara, CA, Apr. 1997, pp. 325–34.

[16] N. Young, “The k-server Dual and Loose Competitiveness for
Paging,” Algorithmica, vol. 11, no. 6, June 1994, pp. 525–41.

[17] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algo-
rithms,” Proc. 1997 USENIX Symp. Internet Tech. and Sys.,
1997, pp. 193–206.

[18] C. Aggarwal, J. Wolf, and P. Fellow, “Caching on the World
Wide Web,” IEEE Trans. Knowledge and Data Eng., vol. 11, no.
1, Jan./Feb. 1999, pp. 94–107.

[19] M. Arlitt and C. Williamson, Trace-Driven Simulation of Docu-
ment Caching Strategies for Internet Web Servers,” Simulation
Journal, vol. 68, no. 1, Nov.–Dec. 1997, pp. 44–50.

[20] J. Dilley and M. Arlitt, “Improving Proxy Cache Performance,”
IEEE Internet Computing, vol. 3, no.6, Nov.–Dec. 1999, pp. 44–50.

[21] V. Almeida et al., “Characterizing Reference Locality in the
WWW,” Proc. 4th Int’l. Conf. Parallel and Distributed Info. Sys.
(PDIS), 1996, pp. 92–103.

[22] L. Rizzo and L. Vicisano, “Replacement Policies for a Proxy
Cache,” IEEE/ACM Trans. Net., vol. 8, no. 2, Apr. 2000, pp. 158–70.

[23] E. O’Neil, P. O’Neil, and G. Weikum, “The lruk Page Replace-
ment Algorithm for Database Disk Buffering,” Proc. ACM SIG-
MOD Int’l. Conf. Management of Data, Washington, D.C.,
USA, May 1993, pp. 297–306.

[24] C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of
WWW Client-Based Traces,” IEEE/ACM Trans. Net., vol. 1, no.
3, Jan 1999, pp. 134–233.

[25] N. Niclausse, Z. Liu, and P. Nain, “A New Efficient Caching
Policy for the World Wide Web,” Proc. Internet Server Perf.
Wksp. (WISP ’98), Madison, WI, USA, June 1998, pp. 119–28.

[26] A. Foong, Y.-H. Hu, and D. Heisey, “Adaptive Web Caching
Using Logistic Regression,” Proc. 1999 IEEE Signal Processing
Society Wksp., Madison, WI, Aug. 1999, pp. 515–24.

[27] A. Tanenbaum, Modern Operating Systems, Prentice Hall, Inc,
1992.

[28] D. Starobinski and D. Tse, “Probabilistics Methods for Web
Caching,” Performance Evaluation, vol. 46, no. 2–3, Oct. 2001,
pp. 125–37.

[29] K. Psounis and Balaji Prabhakar, “A Randomized Web-Cache
Replacement Scheme,” Proc. IEEE INFOCOM Conf., vol. 3, Apr.
2001, pp. 1407–15.

[30] http://www.squid-cache.org/doc/faq/faq-12.html.
[31] S. Irani, “Page Replacement with Multi-Size Pages and Appli-

cations to Web Caching,” Algorithmica, vol. 33, no. 3, July
2002, pp. 384–409.

[32] A. Borodin and R. El-Yaniv, Online Computation and Compet-
itive Analysis, Cambridge University Press, May 1998.

[33] D. D. Sleator and R. Tarjan, “Amortized Efficiency of List
Update and Paging Rules,” Commun. ACM, vol. 28, Feb. 1985,
pp. 202–08.

[34] M. Arlitt, R. Friedrich, and T. Jin, “Performance Evaluation of
Web Proxy Cache Replacement Policies,” Performance Tools,
Palma de Mallora, Spain, Sept. 1998.

[35] P. Barford and M. Crovella, “Generating Representative Web
Workloads for Network and Server Performance Evaluation,”
Proc. ACM SIGMETRICS Conf., 1998, pp. 151–60.

[36] L. Cherkasova and G. Ciardo, “Characterizing Temporal Local-
ity and its Impact on Web Server Performance,” Proc. 9th Int’l.
Conf. Comp. Commun. and Net. (ICCCN), 2000, pp. 434–41.

BIOGRAPHIES

ABDULLAH BALAMASH (balamash@ece.arizona.edu) received the B.S.
degree in electrical and computer engineering from King Abdul-
aziz University, Jeddah, Saudi Arabia, in 1991. From 1991 to 1994
he worked for the Saudi Consolidated Electricity Company as a
system engineer. In January 1995 he joined the Department of
Electrical and Computer Engineering of King Abdul-aziz University
as a teaching assistant. In August 1996 he received a scholarship
from the Saudi government to pursue his M.S. and Ph.D. degrees.
He received his M.S. degree in electrical and computer engineer-
ing from Syracuse University in 1999. He is currently working
toward his Ph.D. degree at the University of Arizona. His research
interests are in traffic analysis, network systems modeling, and
performance evaluation.

MARWAN KRUNZ (krunz@ece.arizona.edu) is an associate professor
of electrical and computer engineering at the University of Ari-
zona. He received his Ph.D. degree in electrical engineering from
Michigan State University in 1995. From 1995 to 1997 he was a
postdoctoral research associate with the Department of Computer
Science and the Institute for Advanced Computer Studies (UMI-
ACS) at the University of Maryland. His research interests lie in the
field of computer networks, especially in its performance and traf-
fic control aspects. His recent work has focused on power control
for mobile ad hoc networks, quality of service over wireless links,
routing (path selection, state aggregation), WWW traffic model-
ing, and video streaming. He has published more than 70 journal
papers and refereed conference papers in these areas. He is a
recipient of the National Science Foundation CAREER Award
(1998–2002). He currently serves on the editorial board for the
IEEE/ACM Transactions on Networking and the Computer Commu-
nications Journal. He was a guest co-editor for special issues in
IEEE Micro and IEEE Communications Magazine. He is the techni-
cal program chair for the IEEE INFOCOM 2004 Conference (to be
held in Hong Kong) and was the technical program co-chair for
the 9th Hot Interconnects Symposium (Stanford University,
August 2001). He has served and continues to serve on the execu-
tive and technical program committees of many international
conferences. He consults for a number of corporations in the
telecommunications industry.

